

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1408-1414 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030814081414 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1408

An Efficient Load Balancing for Cloud

Computing Environment Using an Enhance

Particle Swarm Optimisation Algorithm

Okere Chidiebere Emmanuel1,Mustapha Lawal

Abdurlrahman1, Muhammad Lamir Isah2, Fatima Umar

Zambuk1, Fatima Shittu1, Goteng Kuwindi Job1

1Department of Mathematical science Abubakar Tafawa Balewa University Bauchi, Nigeria.

Corresponding Author:Okere Chidiebere Emmanuel

--- ----------

Submitted: 10-08-2021 Revised: 22-08-2021 Accepted: 25-08-2021

--- ----------

ABSTRACT: Task scheduling is the most important

requirement on a cloud as it plays the key role of

ensuring that the whole cloud computing facilities are

used efficiently. Task scheduling ensures that best

suitable resources required for a task to be executed

are provided so that efficiency can be achieved with

respect to different performance metrics like time,

cost, scalability, make span, reliability, availability,

throughput, resource utilization and so on. The

proposed algorithm’s design is anchored on reliability

and availability. Because achieving these performance

metrics is complex, a mathematical model was

proposed for load balancing. This goal is to balance a

particle swarm through efficient scheduling of tasks

and adequate resource allocation by taking into

account the following parameters: reliability,

execution time, transmission time, make span, round

trip time, transmission cost and load balancing

between tasks and virtual machine. The proposed

algorithm can play a role in achieving reliability of a

typical cloud computing environment. The proposed

method was compared with standard PSO, and

Longest Cloudlet to Fastest Processor (LCFP)

algorithm and results show that the Proposed PSO-

based algorithm is efficient with respect to Makespan,

Average Waiting Time, Average Response Time, and

Time Complexity.

I. INTRODUCTION
The National Institute of Standards and

Technology (NIST) defined the Cloud as “a model for

enabling convenient, on-demand network access to a

shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released

with minimal management effort or service provider

interaction.” The Cloud is a shared infrastructure

which can attach huge pools of systems in order to

provide users with a variety of storage and computing

resources via the internet on rental basis. Its major

potential is the provision of Software as a Service

(SaaS), Infrastructure as a Service (IaaS), and

Platform as a Service (PaaS) [1]. Despite the

advantages that the Cloud provide, it comes with it

the problem of load imbalance. This problem is faced

in two major areas: Task Scheduling and Virtual

Machine Placement [2]. Task scheduling, the most

troubling problem is concerned with search for

optimal schedules in view of a number of constraints.

Task scheduling entails optimal usage of scarce

resources. A high-performance cloud is one that is

efficient in resource scheduling. Most existing load

balancing algorithms do not consider reliability and

availability which should be considered. Load

balancing on a cloud is an NP-hard problem. PSO as a

heuristic algorithm has been used greatly in solving

load balancing and other NP-hard problems. This

research aims at enhancing the overall performance of

PSO algorithm. The proposed method is however

based on the PSO algorithm. This algorithm is

proposed to achieve reliability with respect to task

scheduling by taking into account the following

parameters: Makespan, Average Waiting Time,

Average Response Time, and Time Complexity.

II. PROPOSED METHOD
2.1 Benchmark Algorithm

Particle Swarm Optimization (PSO) [3] is a

computational method that optimizes a problem

by iteratively improving a candidate solution with

regard to a given measure of quality. A problem is

solved using PSO by having a population of candidate

https://orcid.org/0000-0003-1152-3272
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1234-1240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030812341240 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1409

solutions (called particles), and then by moving these

particles around in the search-space using

simple mathematical formulae over the

particle's position and velocity. The movement of

each particle is influenced by its known position, but

is guided toward the best-known positions in the

search-space, which are updated as better positions

are found by other particles. This approach is

expected to move the swarm (of particles) toward the

best solutions.

PSO is a metaheuristic approach [3]as it makes no

assumptions about the problem being optimized and

is capable of searching very large spaces of candidate

solutions. However, metaheuristic algorithms such as

PSO do not guarantee that an optimal solution is ever

found. Also, the PSO algorithm does not use

the gradient of the problem being optimized, which

means the PSO algorithm does not require that the

optimization problem be differentiable as it is in the

case of some classic optimization methods such

as gradient descent and quasi-newton methods.

Formally speaking, let f: ℝn → ℝ be the cost function

to be minimized. The cost function takes a candidate

solution (or a particle) as an argument which is in the

form of a vector of real numbers and then produces a

real number as output. This output indicates the

objective function value of the given candidate

solution. As earlier stated, the gradient of objective

function f is not known. The goal is to find a

solution a for which f(a) ≤ f(b) for all b in the search-

space, making a the global minimum. Maximization

is achieved using the function h = -f.

So, let S be the number of particles (or candidate

solutions) in the swarm, with each having a

position xi ∈ℝn in the search-space and a

velocity vi ∈ℝn. Let pi be the best known position of

particle i and let g be the best known position of the

entire swarm. A basic PSO algorithm is then give as:

Table I: Particle Swarm Optimization (PSO) Algorithm

foreach particle i = 1, … , S do

 Initialize the particle’s position with a uniformly distributed random vector: xi ~ U(blo, bup)

 Initialize the particle's best known position to its initial position: pi ← xi

 if f(pi) < f(g) then

 update the swarm's best known position: g ← pi

 Initialize the particle's velocity: vi ~ U(-|bup-blo|, |bup-blo|)

while a termination criterion is not met, do:

for each particle i = 1, ..., S do

 for each dimension d = 1, ..., n do

 Pick random numbers: rp, rg ~ U(0,1)

 Update the particle's velocity: vi,d ← ω vi,d + φprp (pi,d-xi,d) + φgrg (gd-xi,d)

Update the particle's position: xi ← xi + vi

if f(xi) < f(pi) then

 Update the particle's best-known position: pi ← xi

 if f(pi) < f(g) then

 Update the swarm's best-known position: g ← pi

The values blo and bup are respectively the

lower and upper boundaries of the search-space. The

termination criterion can be the number of iterations

performed, or a solution where the adequate objective

function value is found. The parameters ω, φp, and

φgare selected by the practitioner and control the

behavior and efficacy of the PSO method.

2.2 Proposed PSO-based Algorithm

Task Model

Definition 1 When a VM executes a task, the task

consumes resources. This task resource consumption

is directly proportional with the availability of

resources at its respective node (VM).

Ti= [Tcpui, Tmemi, Tdiski, Tneti]; (1)

Definition 2 Execution Time: For each task i to be

executed on VM j, the time it will take to complete

task i is known as its weight or execution time and is

represented as Ei
j.

Load Model

Definition 3 Node Load: The load at a given node is

the summation of the weight of all tasks allocated to

such a node. This can be represented as Li
j.

Li
j= ∑ Eij

n

i=1
; (2)

Definition 4 Load Benchmark: This value is a

computation of the average of Node Load Li
j

represented as benchmark(L)

https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wikipedia.org/wiki/Row_vector
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Gradient

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1408-1414 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030814081414 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1410

benchmark(L) = ∑ Lij
n,m

i=1,j=1
/ m; (3)

The Proposed PSO-based Algorithm

maintains a (ACO) to organize VMs such that each

node on the tree is a VM. Each node holds single or

multiple task entries. Once tasks arrive, the tasks are

allocated to the nodes (VMs) of the ACO by a task

allocation algorithm. This process continues until all

tasks on all nodes (VMs) have finished execution and

deleted from nodes. The ACO helps manage the

search space by ensuring that VMs to the left subtree

of the ACO are underloaded ones while those to the

right subtree are overloaded VMs. The proposed

algorithm achieves load balancing by continuously

migrating VMs to nodes that make the ACO

balanced; that is, the left and right subtrees having

loads that are almost equal. The proposed PSO-based

algorithm is below:

Algorithm: Proposed PSO-based Algorithm for Load Balancing

Input: a set of Virtual Machines VMs

Output: a set of executed VMs on a balanced ACO

STEP 1: l_load = compute load of left subtree;

STEP 2: r_load = computer load of right subtree;

STEP 3:

 if l_load>r_load

 migrate largest VM in left sub-tree to right sub-tree

 else if l_load<r_load

 migrate largest VM in right sub-tree to left sub-tree

 else

 ACO is balanced

STEP 4: terminate when all VMs have finished execution

Fig. 1: Proposed PSO-based Algorithm for Load Balancing

2.3 Task Entry Structure and Virtual Machine

Parameters

The Task Entry for every VM is a four tuple

where id mean a unique task identification number,

vm_id is a unique VM identification number,

exectime refers to task execution time or weight, and

comptime refers to estimated completion time for

task.

Tid = <id, vm_id, exectime, comptime>; (4)

Every VM also maintains certain parameters

to help monitor its activities. The parameters are

vm_id which means VM unique identification

number, load refers to the total weight of tasks

allocated to the VM, finishtime refers to the

timestamp the VM will finish executing the tasks

allocated to it, and last refers to the time the last task

finished execution.

VMid = <vm_id, load, finishtime, last>; (5)

2.4 Task Allocation Algorithm

Algorithm: Task Allocation Algorithm

Input: a set of Tasks T

Output: a set of VMs placed on a balanced ACO

STEP 1: If ACO is empty, create new VM and insert on the ACO.

STEP 2: Identify VM with the least load on the ACO and assign task to it. Repeat this process

until all tasks have been allocated.

STEP 3: While VMs are executing tasks, use the PSO algorithm to optimize solution based on

indicated performance metrics.

STEP 4: Terminate algorithm when VMs have executed all tasks.

Fig. 2: Task Scheduling Algorithm

III. RESULTS AND DISCUSSION
3.1 Experimental Conditions

CloudSim was used to model and simulate

VMs, computing resources, and energy consumption

in order to evaluate the efficiency of load balancing

for the Proposed PSO-based Algorithm. MATLAB

2018a was used to simulate the Proposed PSO-based

(P-PSO) Algorithm, the standard PSO (S-PSO)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1234-1240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030812341240 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1411

algorithm, and the Longest Cloudlet to Fastest

Processor (LCFP) [4] algorithm. This paper compares

the performance of these algorithms using the

following performance metrics: Makespan, Average

Waiting Time, Average Response Time, and Time

Complexity. In this experiment, 20 tasks were

scheduled against 6 VMs. Table I presents the 20

tasks and the execution time while Table II presents

efficiency grade for proposed PSO-based algorithm,

standard PSO algorithm, and Longest Cloudlet to

Fastest Processor algorithm respectively. Fig. 3

pictorially describes the result of the experiment.

Table 3: Tasks and their Execution Time

Task ID

Execution Time (in Seconds)

1 10.2

2 23.5

3 14.1

4 15.6

5 17.3

6 21.9

7 14.0

8 19.6

9 15.2

10 12.5

11 17.1

12 22.8

13 16.2

14 14.6

15 12.1

16 23.2

17 13.9

18 20.5

19 22.3

20 19.6

21 21.9

22 14.0

23 19.6

24 15.2

25 12.5

26 17.1

27 22.8

28 16.2

29 14.6

30 12.1

31 23.2

32 13.9

33 20.5

34 22.3

35 19.6

36 15.6

37 17.3

38 21.9

39 14.0

40 19.6

41 15.2

42 12.5

43 17.1

44 22.8

45 12.1

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1408-1414 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030814081414 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1412

Table II: Efficiency Grade for Proposed PSO-based, Stand PSO, and LCFP algorithms

Algorithm

Makespan

Average Waiting

Time

Average

Response Time

Time Complexity

P-PSO 0.219299 0.002321 0.021234 O(nlogn)

S-PSO 0.327217 0.012324 0.145432 O(n2)

LCFP

0.638821

0.102321

0.211232

O(n2)

Fig 3: Efficiency Grade distribution of Proposed PSO-based, Standard PSO, and Longest Cloudlet to Fastest

Processor

3.1 Discussion of Results

The result of this experiment (as shown in

Fig. 3) is tied to the understandability and

implementation of the comparative algorithms.

Table II and Fig. 3 shows clearly that the

Proposed PSO-based algorithm outperforms Standard

PSO and Longest Cloudlet to Faster Processor

algorithms with respect to Makespan, Average

Waiting Time, Average Response Time, and Time

Complexity. From Table II and Fig. 3, it can also be

seen that the Proposed PSO-based algorithm is

efficient in 4 performance metrics which also means

that the Proposed PSO-based algorithm is more

reliable than its comparative algorithms.

In theory, this result is an evidence of

advancements in the Load Balancing algorithms

domain. In practice, the Proposed PSO-based

algorithm will aid cloud providers improve on

Makespan, Average Waiting Time, Average

Response Time, and Time Complexity while it will in

turn help them reduce Processing Cost and Energy

Consumption.

IV. CONCLUSION AND FUTURE WORK
This paper introduced the ‘Proposed PSO-

based’ algorithm. The results obtained after

experimentation is a strong indicator that the

Proposed PSO-based algorithm is more efficient than

Standard PSO and Longest Cloudlet to Fastest

Processor algorithms with respect to Makespan,

Average Waiting Time, Average Response Time, and

Time Complexity. The Proposed PSO-based

algorithm does not put task migration into

consideration which might leave some virtual

machines overloaded. Further research is

recommended in the area of task migration so as to

improve on other performance metrics like Average

Waiting Time and Average Response Time.

ACKNOWLEDGEMENT
We acknowledge the support of Department of

Mathematical Science, Abubakar Tafawa Balewa

University, Bauchi.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Makespan Average Waiting
Time

Average
Response Time

Efficiency Grade

P-PSO S-PSO LCFP

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1234-1240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030812341240 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1413

REFERENCE
[1]. H. Alexa and C. James, "The Basics of Cloud

Computing," Carnegie Mellon University,

2011.

[2]. G. Chunye, L. Jie and Z. Qiang, "The

Characteristics of Cloud Computing," in 2010

39th International Conference on Parallel

Processing Workshops, San Diego, CA, USA,

2010.

[3]. L. Zhanghui and W. Xiaoli, "A PSO-Based

Algorithm for Load Balancing in Virtual

Machines of Cloud Computing Environment,"

in International Conference in Swarm

Intelligence, Berlin, 2012.

[4]. S. Sindhu and M. Saswati, "Efficient Task

Scheduling Algorithms for Cloud Computing

Environment," in High Performance

Architecture and Grid Computing:

International Conference, Changiagarh, India,

2011.

[5]. Torry Harris, "Cloud Computing - An

Overview," [Online]. Available:

http://www.thbs.com/downloads/Cloud-

Computing-Overview.pdf. [Accessed 21

December 2017].

[6]. G. Yongqiang, G. Haibing, Q. Zhengwei, H.

Yang and L. Liang, "A multi-objective ant

colony system algorithm for virtual machine

placement in cloud computing," Journal of

Computer and System Sciences, vol. 79, no. 8,

pp. 1230-1242, 2013.

[7]. K. C. N. M. Mosharaf and B. Raouf, "A survey

of network virtualization," Computer

Networks, vol. 54, no. 5, pp. 862-876, 2010.

[8]. B. Paul, D. Boris, F. Keir, H. Steven, H. Tim,

H. Alex, N. Rolf, P. Ian and W. Andrew, "Xen

and the art of virtualization," in SOSP '03

Proceedings of the nineteenth ACM

symposium on Operating systems principles,

2003.

[9]. L. Flavio and D. P. Roberto, "Secure

virtualization for cloud computing," Journal of

Network and Computer Applications, vol. 34,

no. 3, pp. 1113-1122, 2011.

[10]. L. K. Ronald and D. V. Russel, Cloud Security:

A Comprehensive Guide to Secure Cloud

Computing, Wiley Publishing, 2010.

[11]. J. Y and M. K, "Cloud computing - concepts,

architecture and challenges," in Computing,

Electronics and2012 International Conference

on Computing, Electronics and Electrical

Technologies (ICCEET), Kumaracoil, India,

2012.

[12]. A. Mohammad and H. Eui-Nam, "Fog

Computing and Smart Gateway Based

Communication for Cloud of Things," in 2014

International Conference on Future Internet of

Things and Cloud, Barcelona, 2014.

[13]. Z. Qi, C. Lu and B. Raouf, "Cloud computing:

state-of-the-art and research challenges,"

Journal of Internet Services and Applications,

vol. 1, no. 1, pp. 7-18, 2010.

[14]. K. Dzmitry, B. Pascal and U. K. Samee,

"GreenCloud: a packet-level simulator of

energy-aware cloud computing data centers,"

The Journal of Supercomputing, vol. 62, no. 3,

pp. 1263-1283, 2012.

[15]. K. M. Nitin and M. Nishchol, "Load Balancing

Techniques: Need, Objectives and Major

Challenges in Cloud Computing - A

Systematic Review," International Journal of

Computer Applications, vol. 131, pp. 11-19,

2015.

[16]. R. Martin, L. David and T.-B. A, "A

Comparative Study into Distributed Load

Balancing Algorithms for Cloud Computing,"

in 2010 IEEE 24th International Conference on

Advanced Information Networking and

Applications Workshops, Perth, WA,

Australia, 2010.

[17]. W. Lee, J. S. Howard, P. R. Vwani and A. M.

Anthony, "Task Matching and Scheduling in

Heterogeneous Computing Environments

Using a Genetic-Algorithm-Based Approach,"

Journal of Parallel and Distributed Computing,

vol. 47, no. 1, pp. 8-22, 1997.

[18]. S. Pinal, "A SURVEY OF VARIOUS

SCHEDULING ALGORITHM IN CLOUD,"

International Journal of Research in

Engineering and Technology, vol. 2, no. 2, pp.

131-135, 2013.

[19]. M. M, M. N, K. Y, C. L. Y, G. T. E, Y. Z. A

and T. D, "A parallel bi-objective hybrid

metaheuristic for energy-aware scheduling for

cloud computing systems," Journal of Parallel

and Distributed Computing, vol. 71, no. 11, pp.

1497-1508, 2011.

[20]. F. B. Luiz and R. M. M. Edmundo, "HCOC: a

cost optimization algorithm for workflow

scheduling in hybrid clouds," Journal of

Internet Services and Applications, vol. 2, no.

3, pp. 207-227, 2011.

[21]. T. M. Siva, S. R and Y. Lei, "Stochastic

models of load balancing and scheduling in

cloud computing clusters," in 2012

Proceedings IEEE INFOCOM, Orlando, FL,

USA, 2012.

[22]. S. Pooja and M. Pramati, "Analysis of variants

in Round Robin Algorithms," International

Journal of Computer Science and Information

Technologies, vol. 4, no. 3, pp. 416-419, 2013.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 8 Aug 2021, pp: 1408-1414 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030814081414 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1414

[23]. M. Yinchi, C. Xi and L. Xiaofang, "Max-Min

Task Scheduling Algorithm for Load Balance

in Cloud Computing," in Proceedings of

International Conference on Computer Science

and Information Technology, Advances in

Intelligent Systems and Computing 225, India,

2014.

[24]. B. K. Remesh and P. Samuel, "Enhanced Bee

Colony Algorithm for Efficient Load

Balancing and Scheduling in Cloud,"

Innovations in Bio-Inspired Computing and

Applications, vol. 424, pp. 67-78, 2016.

[25]. M. Gao and L. Hao, "An Improved Algorithm

Based on Max-Min for Cloud Task

Scheduling," Recent Advances in Computer

Science and Information Engineering, vol. 125,

pp. 217-223, 2012.

